Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Propane-1,3-diaminium bis(tetrafluoroborate)-18-crown-6 (1/2)

Min-Min Zhao

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: chemcrystal66@yahoo.com.cn

Received 10 January 2012; accepted 13 January 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; disorder in solvent or counterion; R factor = 0.077; wR factor = 0.212; data-to-parameter ratio = 12.7.

In the title compound, $C_3H_{12}N_2^{2+}\cdot 2BF_4^{-}\cdot 2C_{12}H_{24}O_6$, the central C atom of the propane-1,3-diammonium cation lies on a crystallographic twofold rotation axis. The terminal NH₃⁺ groups insert into the crown rings through strong N-H···O hydrogen-bonding interactions, resulting in the formation of a 1:2 supramolecular $[(C_3H_{12}N_2)\cdot(C_{12}H_{24}O_6)_2]^{2+}$ complex. The anions are linked to the supramolecular complexes *via* weak C-H···F hydrogen bonds. The F atoms of the anion are disordered over two orientations with site occupancies of 0.5.

Related literature

For the structures and properties of a related compounds, see: Fu *et al.* (2011); Zhao (2012) and references therein.

Experimental

Crystal data $C_3H_{12}N_2^{2+}\cdot 2BF_4^{-}\cdot 2C_{12}H_{24}O_6$ $M_r = 778.39$ Monoclinic, C2/c

a = 22.615 (5) Åb = 8.8423 (18) Åc = 21.077 (4) Å $\beta = 113.41 (3)^{\circ}$ $V = 3867.8 (16) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.910, T_{max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.077$ $wR(F^2) = 0.212$ S = 1.133413 reflections 268 parameters 37 restraints H-atom parameters constrained

 $\mu = 0.12 \text{ mm}^{-1}$

 $0.10 \times 0.05 \times 0.05$ mm

16100 measured reflections

3413 independent reflections

2018 reflections with $I > 2\sigma(I)$

T = 298 K

 $R_{\rm int} = 0.079$

 $\Delta \rho_{\text{max}} = 0.31 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.23 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1B \cdots O2$	0.89	2.06	2.915 (3)	161
$N1 - H1A \cdots O4$	0.89	2.03	2.911 (4)	169
N1−H1 <i>C</i> ···O6	0.89	2.08	2.967 (4)	179
$C12 - H12B \cdot \cdot \cdot F4'$	0.97	2.48	3.316 (19)	144
$C13 - H13A \cdots F2$	0.97	2.47	3.346 (12)	150
$C13 - H13A \cdots F2'$	0.97	2.42	3.361 (16)	162
$C5-H5A\cdots F3'^{i}$	0.97	2.41	3.350 (18)	162
$C10-H10B\cdots F1'^{ii}$	0.97	2.41	3.355 (17)	166
$C10-H10B\cdots F2'^{ii}$	0.97	2.44	3.235 (19)	139
$C8-H8A\cdots F3'^{iii}$	0.97	2.50	3.412 (14)	156

Symmetry codes: (i) $-x, y, -z + \frac{1}{2}$; (ii) x, y + 1, z; (iii) $-x, y + 1, -z + \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by a start-up grant from Southeast University, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2697).

References

Fu, D.-W., Zhang, W., Cai, H.-L., Zhang, Y., Ge, J.-Z., Xiong, R.-G. & Huang, S. P. D. (2011). J. Am. Chem. Soc. 133, 12780–12786.
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Zhao, M.-M. (2012). Acta Cryst. E68, o327.

Acta Cryst. (2012). E68, o444 [doi:10.1107/S1600536812001572]

Propane-1,3-diaminium bis(tetrafluoroborate)-18-crown-6 (1/2)

M.-M. Zhao

Comment

As a continuation of the research project devoted to the synthesis and characterization of novel phase transition crystals of amino compounds (Zhao, 2012), the crystal structure of the title compound is reported herein.

The title compound is composed of $[(C_3H_{12}N_2).(C_{12}H_{24}O_6)_2]^{2+}$ cations and BF₄⁻ anions (Fig. 1). A 1:2 supramolecular rotator-stator structure is generated between one propane-1,3-diammonium dication and two 18-crown-6 molecules through six N—H···O hydrogen bonds (Table 1) occurring between the protons of the NH₃⁺ groups and the O atoms of the crown ethers. The supramolecular rotator has crystallographically imposed twofold rotation symmetry, the central C atom of the propane-1,3-diammonium cation lying on a crystallographic twofold rotation axis. The macrocycle adopts a conformation with approximate D_{3d} symmetry, with all O-C-C-O torsion angles being *gauche* and alternating in sign, and all C-O-C-C torsion angles being *trans*. The C–N bonds of the cation are almost perpendicular to the mean planes of the oxygen atoms of the crown ethers. The supramolecular structure is introduced as counter cation to BF₄⁻ anions. The B atom has a flattened tetrahedral coordination geometry provided by four F atoms [range of *cis*-bond angles = 121.6 (5)-89.1 (9) °; dav(F-B) = 1.226 (9)-1.445 (9)Å]. All F atoms of the BF₄⁻ anion are disordered over two orientations. In the crystal structure (Fig. 2), cations and anions are linked by weak interionic C—H···F hydrogen bonds (Table 1).

Experimental

Commercial 18-crown-6 (6 mmol), HBF₄ (6 mmol) and propane-1,3-diamine (3 mmol) were dissolved in a water/EtOH (1:1 v/v) solution. The solvent was slowly evaporated in air affording colourless block-shaped crystals of the title compound suitable for X-ray analysis.

The dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent, suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (412 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed (dielectric constant ranging from 4.5 to 8.8).

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The positional parameters of the N-bound H atoms were initially refined freely, subsequently they were restrained using a N–H distance of 0.89 (2) Å, and in the final refinements treated as riding with $U_{iso}(H) = 1.5U_{eq}(N)$. All F atoms were disordered over two sites with occupancies of 0.5, and were refined anisotropically using ADP restraints (SIMU and DELU).

Figures

Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Only H atoms of the NH_3^+ groups are shown. Symmetry code: (A) -x, +y, 1/2-z.

Fig. 2. Crystal packing of the title compound approximately viewed along the b axis. Only hydrogen atoms involved in N—H···O hydrogen bonds (dashed line) are shown.

F(000) = 1656

 $\theta = 2.9 - 27.5^{\circ}$

 $\mu = 0.12 \text{ mm}^{-1}$

Block, colourless

 $0.10\times0.05\times0.05~mm$

T = 298 K

 $D_{\rm x} = 1.337 \ {\rm Mg \ m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3410 reflections

Propane-1,3-diaminium bis(tetrafluoroborate)-18-crown-6 (1/2)

Crystal data

C₃H₁₂N₂²⁺·2BF₄⁻·2C₁₂H₂₄O₆ $M_r = 778.39$ Monoclinic, C2/c Hall symbol: -C 2yc a = 22.615 (5) Å b = 8.8423 (18) Å c = 21.077 (4) Å $\beta = 113.41$ (3)° V = 3867.8 (16) Å³ Z = 4

Data collection

Rigaku Mercury2 diffractometer	3413 independent reflections
Radiation source: fine-focus sealed tube	2018 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.079$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
CCD profile fitting scans	$h = -26 \rightarrow 26$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -10 \rightarrow 10$
$T_{\min} = 0.910, \ T_{\max} = 1.000$	$l = -25 \rightarrow 25$
16100 measured reflections	

Refinement

Refinement on F^2

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.080P)^2 + 3.2068P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
02	0.19727 (10)	0.6715 (3)	0.26770 (12)	0.0558 (6)	
O3	0.15021 (11)	0.7740 (3)	0.12991 (13)	0.0650 (7)	
N1	0.10547 (11)	0.9201 (3)	0.23703 (13)	0.0433 (7)	
H1A	0.0918	0.9641	0.1957	0.065*	
H1B	0.1379	0.8578	0.2419	0.065*	
H1C	0.1189	0.9907	0.2698	0.065*	
01	0.22029 (12)	0.8928 (3)	0.37179 (12)	0.0646 (7)	
O4	0.07376 (13)	1.0406 (3)	0.09880 (15)	0.0786 (9)	
05	0.10078 (13)	1.2567 (3)	0.20532 (18)	0.0850 (9)	
O6	0.14972 (14)	1.1589 (3)	0.34468 (17)	0.0771 (8)	
C2	0.25128 (17)	0.6683 (4)	0.3313 (2)	0.0652 (11)	
H2A	0.2862	0.7248	0.3269	0.078*	
H2B	0.2654	0.5647	0.3431	0.078*	
C3	0.21010 (19)	0.5983 (4)	0.2141 (2)	0.0652 (11)	
H3A	0.2180	0.4915	0.2244	0.078*	
H3B	0.2483	0.6418	0.2112	0.078*	
C6	0.0933 (2)	0.9686 (6)	0.0513 (2)	0.0876 (15)	
H6A	0.1345	1.0089	0.0555	0.105*	
H6B	0.0621	0.9881	0.0047	0.105*	
C1	0.2343 (2)	0.7359 (5)	0.3861 (2)	0.0714 (12)	
H1D	0.1971	0.6845	0.3879	0.086*	
H1E	0.2700	0.7243	0.4306	0.086*	
C7	0.0639 (2)	1.2022 (6)	0.0872 (3)	0.0953 (18)	

H7A	0.1024	1.2499	0.0868	0.114*	
H7B	0.0289	1.2203	0.0427	0.114*	
C5	0.0984 (2)	0.8034 (5)	0.06412 (19)	0.0801 (13)	
H5A	0.0580	0.7645	0.0633	0.096*	
H5B	0.1075	0.7525	0.0282	0.096*	
C10	0.1474 (3)	1.3118 (5)	0.3255 (3)	0.0974 (16)	
H10A	0.1872	1.3399	0.3215	0.117*	
H10B	0.1429	1.3738	0.3613	0.117*	
C4	0.1550 (2)	0.6196 (5)	0.1473 (2)	0.0736 (12)	
H4A	0.1616	0.5609	0.1118	0.088*	
H4B	0.1157	0.5848	0.1509	0.088*	
C11	0.2008 (3)	1.1288 (6)	0.4107 (2)	0.0910 (15)	
H11A	0.1929	1.1804	0.4472	0.109*	
H11B	0.2412	1.1654	0.4106	0.109*	
C9	0.0925 (3)	1.3385 (5)	0.2604 (3)	0.0963 (17)	
H9A	0.0528	1.3078	0.2641	0.116*	
H9B	0.0895	1.4458	0.2499	0.116*	
C8	0.0481 (2)	1.2698 (6)	0.1433 (4)	0.1030 (18)	
H8A	0.0369	1.3756	0.1333	0.124*	
H8B	0.0114	1.2179	0.1462	0.124*	
C12	0.2061 (2)	0.9645 (6)	0.4233 (2)	0.0851 (13)	
H12A	0.2395	0.9425	0.4684	0.102*	
H12B	0.1654	0.9272	0.4224	0.102*	
B1	0.0793 (3)	0.6074 (7)	0.4303 (3)	0.0773 (15)	
C14	0.0000	0.9285 (5)	0.2500	0.0449 (11)	
H14A	0.0184	0.9930	0.2904	0.054*	
C13	0.05211 (15)	0.8336 (4)	0.2431 (2)	0.0552 (9)	
H13A	0.0699	0.7687	0.2834	0.066*	
H13B	0.0330	0.7690	0.2028	0.066*	
F2	0.0550 (6)	0.5710 (10)	0.3586 (6)	0.090 (3)	0.50
F3	0.0439 (7)	0.5494 (15)	0.4626 (7)	0.110 (5)	0.50
F4	0.0679 (5)	0.7681 (8)	0.4203 (4)	0.118 (3)	0.50
F1	0.1357 (3)	0.5838 (17)	0.4687 (6)	0.163 (5)	0.50
F1'	0.1185 (8)	0.4723 (15)	0.4546 (6)	0.220 (6)	0.50
F2'	0.0789 (8)	0.5857 (18)	0.3725 (7)	0.172 (7)	0.50
F3'	0.0256 (7)	0.5942 (19)	0.4373 (9)	0.166 (7)	0.50
F4'	0.1152 (8)	0.7196 (18)	0.4632 (7)	0.186 (6)	0.50

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O2	0.0451 (13)	0.0560 (14)	0.0655 (16)	0.0094 (11)	0.0213 (12)	0.0071 (12)
O3	0.0583 (15)	0.0699 (17)	0.0626 (17)	-0.0108 (13)	0.0197 (13)	-0.0076 (13)
N1	0.0392 (14)	0.0452 (15)	0.0476 (15)	0.0051 (12)	0.0196 (12)	0.0064 (12)
01	0.0721 (17)	0.0758 (17)	0.0456 (14)	-0.0101 (14)	0.0230 (13)	0.0011 (12)
O4	0.0700 (18)	0.088 (2)	0.0635 (18)	-0.0096 (15)	0.0110 (14)	0.0276 (16)
O5	0.0607 (18)	0.0645 (18)	0.128 (3)	0.0193 (14)	0.0355 (18)	0.0222 (17)
06	0.093 (2)	0.0527 (16)	0.104 (2)	-0.0128 (15)	0.0591 (19)	-0.0153 (15)

C2	0.048 (2)	0.066 (2)	0.071 (3)	0.0021 (18)	0.011 (2)	0.024 (2)
C3	0.074 (3)	0.045 (2)	0.092 (3)	0.0139 (19)	0.049 (2)	0.0021 (19)
C6	0.069 (3)	0.125 (4)	0.045 (2)	-0.035 (3)	-0.002 (2)	0.018 (3)
C1	0.068 (3)	0.074 (3)	0.057 (2)	-0.004 (2)	0.009 (2)	0.027 (2)
C7	0.059 (3)	0.097 (4)	0.088 (3)	-0.019 (2)	-0.015 (2)	0.061 (3)
C5	0.069 (3)	0.112 (4)	0.044 (2)	-0.026 (2)	0.006 (2)	-0.014 (2)
C10	0.113 (4)	0.065 (3)	0.144 (5)	-0.001 (3)	0.083 (4)	-0.027 (3)
C4	0.078 (3)	0.072 (3)	0.081 (3)	-0.009 (2)	0.043 (3)	-0.023 (2)
C11	0.099 (3)	0.111 (4)	0.069 (3)	-0.025 (3)	0.040 (3)	-0.037 (3)
C9	0.100 (4)	0.046 (2)	0.183 (6)	0.021 (3)	0.100 (4)	0.011 (3)
C8	0.066 (3)	0.071 (3)	0.160 (6)	0.007 (2)	0.032 (4)	0.047 (3)
C12	0.087 (3)	0.108 (4)	0.062 (3)	-0.019 (3)	0.032 (2)	-0.012 (3)
B1	0.073 (4)	0.090 (4)	0.087 (4)	-0.020 (3)	0.051 (3)	-0.033 (3)
C14	0.038 (2)	0.038 (2)	0.059 (3)	0.000	0.020 (2)	0.000
C13	0.0443 (18)	0.0430 (18)	0.084 (3)	-0.0031 (16)	0.0320 (18)	-0.0038 (18)
F2	0.118 (7)	0.076 (4)	0.053 (4)	0.018 (4)	0.010 (4)	0.005 (3)
F3	0.155 (12)	0.100 (6)	0.111 (6)	-0.061 (7)	0.091 (7)	-0.012 (4)
F4	0.178 (8)	0.075 (4)	0.099 (5)	-0.020 (4)	0.052 (5)	-0.016 (3)
F1	0.057 (4)	0.207 (10)	0.160 (8)	-0.022 (5)	-0.025 (4)	0.059 (9)
F1'	0.347 (17)	0.195 (9)	0.148 (9)	0.138 (11)	0.131 (10)	0.066 (8)
F2'	0.168 (14)	0.252 (14)	0.091 (8)	0.078 (9)	0.048 (9)	-0.038 (7)
F3'	0.094 (7)	0.203 (15)	0.246 (18)	-0.048 (8)	0.115 (11)	-0.116 (11)
F4'	0.227 (13)	0.193 (9)	0.198 (12)	-0.162 (10)	0.146 (10)	-0.128 (10)

Geometric parameters (Å, °)

O2—C2	1.410 (4)	С10—С9	1.459 (7)
O2—C3	1.429 (4)	C10—H10A	0.9700
O3—C4	1.407 (5)	C10—H10B	0.9700
O3—C5	1.439 (4)	C4—H4A	0.9698
N1—C13	1.477 (4)	C4—H4B	0.9701
N1—H1A	0.8900	C11—C12	1.473 (7)
N1—H1B	0.8900	C11—H11A	0.9699
N1—H1C	0.8900	C11—H11B	0.9699
O1—C12	1.400 (5)	С9—Н9А	0.9699
O1—C1	1.428 (5)	С9—Н9В	0.9700
O4—C6	1.397 (6)	C8—H8A	0.9700
O4—C7	1.452 (5)	С8—Н8В	0.9700
O5—C8	1.380 (6)	C12—H12A	0.9699
O5—C9	1.442 (6)	C12—H12B	0.9700
O6—C10	1.405 (5)	B1—F1	1.226 (9)
O6—C11	1.436 (6)	B1—F2'	1.228 (15)
C2—C1	1.481 (6)	B1—F3'	1.286 (14)
C2—H2A	0.9701	B1—F4'	1.296 (9)
C2—H2B	0.9700	B1—F3	1.342 (11)
C3—C4	1.475 (6)	B1—F2	1.423 (13)
С3—НЗА	0.9699	B1—F4	1.445 (9)
С3—Н3В	0.9699	B1—F1'	1.454 (11)
C6—C5	1.482 (6)	C14—C13	1.501 (4)

С6—Н6А	0.9701	C14—C13 ⁱ	1.501 (4)
С6—Н6В	0.9700	C14—H14A	0.9700
C1—H1D	0.9701	С13—Н13А	0.9701
C1—H1E	0.9699	C13—H13B	0.9700
С7—С8	1.490 (7)	F2—F2'	0.52 (3)
C7—H7A	0.9700	F3—F3'	0.66 (2)
С7—Н7В	0.9699	F4—F4'	1.174 (18)
C5—H5A	0.9700	F1—F1'	1.058 (15)
С5—Н5В	0.9700	F1—F4'	1.275 (16)
C2—O2—C3	111.8 (3)	O5—C9—C10	110.0 (4)
C4—O3—C5	112.0 (3)	О5—С9—Н9А	110.2
C13—N1—H1A	109.5	С10—С9—Н9А	110.3
C13—N1—H1B	109.5	О5—С9—Н9В	109.1
H1A—N1—H1B	109.5	С10—С9—Н9В	109.2
C13—N1—H1C	109.5	Н9А—С9—Н9В	108.0
H1A—N1—H1C	109.5	O5—C8—C7	109.2 (4)
H1B—N1—H1C	109.5	О5—С8—Н8А	109.8
C12—O1—C1	112.1 (3)	С7—С8—Н8А	109.7
C6—O4—C7	113.5 (4)	O5—C8—H8B	109.8
C8—O5—C9	112.4 (4)	С7—С8—Н8В	109.9
C10-O6-C11	112.4 (4)	H8A—C8—H8B	108.4
O2—C2—C1	109.8 (3)	O1—C12—C11	109.5 (4)
02—C2—H2A	109.3	01—C12—H12A	109.9
C1—C2—H2A	109.9	C11—C12—H12A	110.5
O2—C2—H2B	109.6	01—C12—H12B	109.8
C1—C2—H2B	109.9	C11—C12—H12B	108.8
H2A—C2—H2B	108.3	H12A—C12—H12B	108.4
O2—C3—C4	109.6 (3)	F1—B1—F2'	102.9 (11)
О2—С3—НЗА	109.9	F1—B1—F3'	133.6 (11)
С4—С3—Н3А	110.5	F2'—B1—F3'	117.7 (12)
02—C3—H3B	109.6	F1—B1—F4'	60.7 (9)
C4—C3—H3B	109.0	F2'—B1—F4'	114.0 (11)
H3A—C3—H3B	108.1	F3'—B1—F4'	115.3 (10)
04	110.0 (4)	F1—B1—F3	105 8 (9)
O4—C6—H6A	109.5	F2'—B1—F3	132.3 (11)
С5—С6—Н6А	110.0	F4'—B1—F3	113.2 (9)
O4—C6—H6B	109.6	F1—B1—F2	121.6 (10)
С5—С6—Н6В	109.4	F3'—B1—F2	96.7 (10)
Н6А—С6—Н6В	108.2	F4'—B1—F2	129.6 (9)
O1—C1—C2	109.4 (3)	F3—B1—F2	113.3 (9)
O1—C1—H1D	109.9	F1—B1—F4	110.0 (8)
C2—C1—H1D	109.9	F2'—B1—F4	94.5 (9)
O1—C1—H1E	109.6	F3'—B1—F4	89.1 (9)
C2—C1—H1E	109.8	F4'—B1—F4	50.4 (8)
H1D—C1—H1E	108.3	F3—B1—F4	110.0 (8)
04	109.3 (4)	F2—B1—F4	95.5 (6)
O4—C7—H7A	110.5	F1—B1—F1'	45.5 (7)
С8—С7—Н7А	109.4	F2'—B1—F1'	89.1 (9)
			· ·

O4—C7—H7B	109.7	F3'—B1—F1'	110.9 (11)
С8—С7—Н7В	109.8	F4'—B1—F1'	106.0 (12)
H7A—C7—H7B	108.1	F3—B1—F1'	84.9 (9)
O3—C5—C6	109.2 (3)	F2—B1—F1'	96.5 (7)
O3—C5—H5A	110.7	F4—B1—F1'	155.2 (9)
С6—С5—Н5А	109.9	C13—C14—C13 ⁱ	112.0 (4)
O3—C5—H5B	108.9	C13—C14—H14A	109.6
С6—С5—Н5В	110.0	C13 ⁱ —C14—H14A	108.8
H5A—C5—H5B	108.2	N1—C13—C14	114.8 (3)
O6—C10—C9	110.3 (4)	N1—C13—H13A	108.3
O6-C10-H10A	110.0	C14—C13—H13A	108.3
С9—С10—Н10А	110.4	N1—C13—H13B	108.9
O6—C10—H10B	108.9	C14—C13—H13B	108.7
С9—С10—Н10В	109.0	H13A—C13—H13B	107.6
H10A—C10—H10B	108.1	F2'—F2—B1	58 (3)
O3—C4—C3	108.7 (3)	F3'—F3—B1	70.8 (17)
O3—C4—H4A	109.7	F4'—F4—B1	58.2 (6)
С3—С4—Н4А	109.7	F1'—F1—B1	78.7 (9)
O3—C4—H4B	110.6	F1'—F1—F4'	140.6 (13)
C3—C4—H4B	109.7	B1—F1—F4'	62.4 (7)
H4A—C4—H4B	108.5	F1—F1'—B1	55.8 (6)
O6—C11—C12	109.5 (4)	F2—F2'—B1	101 (3)
O6—C11—H11A	110.6	F3—F3'—B1	80 (2)
C12—C11—H11A	110.4	F4—F4'—F1	126.9 (10)
O6—C11—H11B	109.4	F4—F4'—B1	71.4 (8)
C12—C11—H11B	108.6	F1—F4'—B1	57.0 (6)
H11A—C11—H11B	108.2		
C3—O2—C2—C1	-176.1 (3)	F4—B1—F1—F1'	-175.3 (10)
C2—O2—C3—C4	-173.6 (3)	F2'—B1—F1—F4'	110.5 (12)
C7—O4—C6—C5	-176.6 (3)	F3'—B1—F1—F4'	-98.1 (14)
C12—O1—C1—C2	-177.8 (3)	F3—B1—F1—F4'	-108.0 (10)
02—C2—C1—O1	-65.5 (4)	F2—B1—F1—F4'	120.9 (11)
C6—O4—C7—C8	-175.9 (3)	F4—B1—F1—F4'	10.8 (9)
C4—O3—C5—C6	176.1 (4)	F1'—B1—F1—F4'	-173.9 (14)
O4—C6—C5—O3	-66.6 (4)	F4'—F1—F1'—B1	9(2)
C11—O6—C10—C9	-176.4 (4)	F2'—B1—F1'—F1	109.2 (14)
C5—O3—C4—C3	178.3 (3)	F3'—B1—F1'—F1	-131.3 (15)
O2—C3—C4—O3	66.2 (4)	F4'—B1—F1'—F1	-5.5 (13)
C10-06-C11-C12	-172.4 (4)	F3—B1—F1'—F1	-118.2 (13)
C8—O5—C9—C10	175.9 (4)	F2—B1—F1'—F1	128.9 (12)
O6—C10—C9—O5	-65.0 (5)	F4—B1—F1'—F1	10 (2)
C9—O5—C8—C7	171.7 (3)	F1—B1—F2'—F2	155 (3)
O4—C7—C8—O5	65.7 (4)	F3'—B1—F2'—F2	-2(3)
C1-01-C12-C11	172.4 (3)	F4'—B1—F2'—F2	-142 (3)
O6—C11—C12—O1	60.6 (5)	F3—B1—F2'—F2	29 (3)
C13 ⁱ —C14—C13—N1	-179.2 (4)	F4—B1—F2'—F2	-94 (3)
F1—B1—F2—F2'	-29 (3)	F1'—B1—F2'—F2	111 (3)
F3'—B1—F2—F2'	178 (3)	F1—B1—F3'—F3	-20 (4)
	× /		. /

F4'—B1—F2—F2'	47 (3)	F2'—B1—F3'—F3	128 (3)
F3—B1—F2—F2'	-157 (3)	F4'—B1—F3'—F3	-93 (3)
F4—B1—F2—F2'	88 (3)	F2—B1—F3'—F3	127 (3)
F1'—B1—F2—F2'	-70 (3)	F4—B1—F3'—F3	-137 (3)
F1—B1—F3—F3'	165 (3)	F1'—B1—F3'—F3	28 (3)
F2'—B1—F3—F3'	-70 (3)	B1—F4—F4'—F1	13.8 (11)
F4'—B1—F3—F3'	101 (3)	F1'—F1—F4'—F4	-25 (3)
F2—B1—F3—F3'	-59 (3)	B1—F1—F4'—F4	-15.7 (12)
F4—B1—F3—F3'	46 (3)	F1'—F1—F4'—B1	-9(2)
F1'—B1—F3—F3'	-154 (3)	F1—B1—F4'—F4	166.8 (11)
F1—B1—F4—F4'	-12.2 (10)	F2'—B1—F4'—F4	75.1 (12)
F2'—B1—F4—F4'	-117.7 (11)	F3'—B1—F4'—F4	-65.6 (13)
F3'—B1—F4—F4'	124.6 (11)	F3—B1—F4'—F4	-97.4 (11)
F3—B1—F4—F4'	104.0 (11)	F2—B1—F4'—F4	58.4 (14)
F2—B1—F4—F4'	-138.8 (9)	F1'—B1—F4'—F4	171.4 (9)
F1'—B1—F4—F4'	-20.1 (19)	F2'—B1—F4'—F1	-91.7 (13)
F2'—B1—F1—F1'	-75.6 (13)	F3'—B1—F4'—F1	127.6 (13)
F3'—B1—F1—F1'	76 (2)	F3—B1—F4'—F1	95.7 (11)
F4'—B1—F1—F1'	173.9 (14)	F2—B1—F4'—F1	-108.4 (14)
F3—B1—F1—F1'	65.9 (14)	F4—B1—F4'—F1	-166.8 (11)
F2—B1—F1—F1'	-65.2 (12)	F1'—B1—F4'—F1	4.5 (11)

Symmetry codes: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1B…O2	0.89	2.06	2.915 (3)	161.
N1—H1A····O4	0.89	2.03	2.911 (4)	169.
N1—H1C…O6	0.89	2.08	2.967 (4)	179.
C12—H12B…F4'	0.97	2.48	3.316 (19)	144
C13—H13A…F2	0.97	2.47	3.346 (12)	150
C13—H13A…F2'	0.97	2.42	3.361 (16)	162
C5—H5A···F3 ^{,ii}	0.97	2.41	3.350 (18)	162
C10—H10B…F1 ^{,iii}	0.97	2.41	3.355 (17)	166
C10—H10B…F2 ^{,iii}	0.97	2.44	3.235 (19)	139
C8—H8A···F3 ^{iv}	0.97	2.50	3.412 (14)	156.

Symmetry codes: (ii) -x, y, -z+1/2; (iii) x, y+1, z; (iv) -x, y+1, -z+1/2.

Fig. 1

